3.183 \(\int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=107 \[ \frac {3 x \sqrt {\sec (c+d x)}}{8 b^2 \sqrt {b \sec (c+d x)}}+\frac {\sin (c+d x)}{4 b^2 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {b \sec (c+d x)}}+\frac {3 \sin (c+d x)}{8 b^2 d \sqrt {\sec (c+d x)} \sqrt {b \sec (c+d x)}} \]

[Out]

1/4*sin(d*x+c)/b^2/d/sec(d*x+c)^(5/2)/(b*sec(d*x+c))^(1/2)+3/8*sin(d*x+c)/b^2/d/sec(d*x+c)^(1/2)/(b*sec(d*x+c)
)^(1/2)+3/8*x*sec(d*x+c)^(1/2)/b^2/(b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {18, 2635, 8} \[ \frac {3 x \sqrt {\sec (c+d x)}}{8 b^2 \sqrt {b \sec (c+d x)}}+\frac {\sin (c+d x)}{4 b^2 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {b \sec (c+d x)}}+\frac {3 \sin (c+d x)}{8 b^2 d \sqrt {\sec (c+d x)} \sqrt {b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sec[c + d*x]^(3/2)*(b*Sec[c + d*x])^(5/2)),x]

[Out]

(3*x*Sqrt[Sec[c + d*x]])/(8*b^2*Sqrt[b*Sec[c + d*x]]) + Sin[c + d*x]/(4*b^2*d*Sec[c + d*x]^(5/2)*Sqrt[b*Sec[c
+ d*x]]) + (3*Sin[c + d*x])/(8*b^2*d*Sqrt[Sec[c + d*x]]*Sqrt[b*Sec[c + d*x]])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 18

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m - 1/2)*b^(n + 1/2)*Sqrt[a*v])/Sqrt[b*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rubi steps

\begin {align*} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (b \sec (c+d x))^{5/2}} \, dx &=\frac {\sqrt {\sec (c+d x)} \int \cos ^4(c+d x) \, dx}{b^2 \sqrt {b \sec (c+d x)}}\\ &=\frac {\sin (c+d x)}{4 b^2 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {b \sec (c+d x)}}+\frac {\left (3 \sqrt {\sec (c+d x)}\right ) \int \cos ^2(c+d x) \, dx}{4 b^2 \sqrt {b \sec (c+d x)}}\\ &=\frac {\sin (c+d x)}{4 b^2 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {b \sec (c+d x)}}+\frac {3 \sin (c+d x)}{8 b^2 d \sqrt {\sec (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {\left (3 \sqrt {\sec (c+d x)}\right ) \int 1 \, dx}{8 b^2 \sqrt {b \sec (c+d x)}}\\ &=\frac {3 x \sqrt {\sec (c+d x)}}{8 b^2 \sqrt {b \sec (c+d x)}}+\frac {\sin (c+d x)}{4 b^2 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {b \sec (c+d x)}}+\frac {3 \sin (c+d x)}{8 b^2 d \sqrt {\sec (c+d x)} \sqrt {b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 58, normalized size = 0.54 \[ \frac {(12 (c+d x)+8 \sin (2 (c+d x))+\sin (4 (c+d x))) \sqrt {\sec (c+d x)}}{32 b^2 d \sqrt {b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sec[c + d*x]^(3/2)*(b*Sec[c + d*x])^(5/2)),x]

[Out]

(Sqrt[Sec[c + d*x]]*(12*(c + d*x) + 8*Sin[2*(c + d*x)] + Sin[4*(c + d*x)]))/(32*b^2*d*Sqrt[b*Sec[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 208, normalized size = 1.94 \[ \left [\frac {\frac {2 \, {\left (2 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2}\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} - 3 \, \sqrt {-b} \log \left (2 \, \sqrt {-b} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )^{\frac {3}{2}} \sin \left (d x + c\right ) + 2 \, b \cos \left (d x + c\right )^{2} - b\right )}{16 \, b^{3} d}, \frac {\frac {{\left (2 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2}\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 3 \, \sqrt {b} \arctan \left (\frac {\sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {b} \sqrt {\cos \left (d x + c\right )}}\right )}{8 \, b^{3} d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/16*(2*(2*cos(d*x + c)^4 + 3*cos(d*x + c)^2)*sqrt(b/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) - 3*sqrt(-
b)*log(2*sqrt(-b)*sqrt(b/cos(d*x + c))*cos(d*x + c)^(3/2)*sin(d*x + c) + 2*b*cos(d*x + c)^2 - b))/(b^3*d), 1/8
*((2*cos(d*x + c)^4 + 3*cos(d*x + c)^2)*sqrt(b/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 3*sqrt(b)*arcta
n(sqrt(b/cos(d*x + c))*sin(d*x + c)/(sqrt(b)*sqrt(cos(d*x + c)))))/(b^3*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c))^(5/2)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 1.12, size = 74, normalized size = 0.69 \[ \frac {2 \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 \cos \left (d x +c \right ) \sin \left (d x +c \right )+3 d x +3 c}{8 d \cos \left (d x +c \right )^{4} \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (\frac {b}{\cos \left (d x +c \right )}\right )^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(3/2)/(b*sec(d*x+c))^(5/2),x)

[Out]

1/8/d*(2*cos(d*x+c)^3*sin(d*x+c)+3*cos(d*x+c)*sin(d*x+c)+3*d*x+3*c)/cos(d*x+c)^4/(1/cos(d*x+c))^(3/2)/(b/cos(d
*x+c))^(5/2)

________________________________________________________________________________________

maxima [A]  time = 1.14, size = 49, normalized size = 0.46 \[ \frac {12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (4 \, d x + 4 \, c\right ), \cos \left (4 \, d x + 4 \, c\right )\right )\right )}{32 \, b^{\frac {5}{2}} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/32*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))))/(b^(5/2)*d)

________________________________________________________________________________________

mupad [B]  time = 0.46, size = 55, normalized size = 0.51 \[ \frac {\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}\,\left (8\,\sin \left (2\,c+2\,d\,x\right )+\sin \left (4\,c+4\,d\,x\right )+12\,d\,x\right )}{32\,b^3\,d\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(3/2)),x)

[Out]

((b/cos(c + d*x))^(1/2)*(8*sin(2*c + 2*d*x) + sin(4*c + 4*d*x) + 12*d*x))/(32*b^3*d*(1/cos(c + d*x))^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(3/2)/(b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________